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As a paradigmatic example of multiscale quantum criticality, we consider the Pomeranchuk instability of an
isotropic Fermi liquid in two spatial dimensions, d=2. The corresponding Ginzburg-Landau theory for the
quadrupolar fluctuations of the Fermi surface consists of two coupled modes, critical at the same point, and
characterized by different dynamical exponents: one being ballistic with dynamical exponent z=2 and the other
one is Landau damped with z=3, thus giving rise to multiple dynamical scales. We find that at temperature
T=0, the ballistic mode governs the low-energy structure of the theory as it possesses the smaller effective
dimension d+z. Its self-interaction leads to logarithmic singularities, which we treat with the help of the
renormalization group. At finite temperature, the coexistence of two different dynamical scales gives rise to a
modified quantum-to-classical crossover. It extends over a parametrically large regime with intricate interac-
tions of quantum and classical fluctuations leading to a universal T dependence of the correlation length
independent of the interaction amplitude. The multiple scales are also reflected in the phase diagram and in the
critical thermodynamics. In particular, we find that the latter cannot be interpreted in terms of only a single
dynamical exponent whereas, e.g., the critical specific heat is determined by the z=3 mode, the critical
compressibility is found to be dominated by the z=2 fluctuations.
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I. INTRODUCTION

At a quantum phase transition, statics and dynamics of
critical fluctuations are inseparably entangled. This is mani-
fest in the dependence of static and thermodynamic proper-
ties on the dynamical exponent z, that allows to associate a
thermal length, �T�T−1/z, with temperature T. This thermal
length is at the origin of the quantum-to-classical crossover
where critical fluctuations change their character.1,2 Whereas
critical bosonic modes with momenta higher than the inverse
thermal length are of a quantum-mechanical nature, modes
with smaller momenta behave effectively classical. This
crossover also reveals itself in the phase diagram spanned by
the control parameter of the quantum phase transition, r, and
temperature, T. The behavior of, e.g., thermodynamic prop-
erties changes qualitatively when the correlation length � is
of the same order as the thermal length �T.

The identification of the critical fluctuations and their dy-
namics close to a putative quantum phase transition in a
material is a nontrivial task. Frequently, low-energy fluctua-
tions characterized by different dynamics coexist and inter-
act. In fact, this is generally the case in critical metals where
the dynamics of the order parameter coexists with the dy-
namics of the fermionic quasiparticles. The standard Hertz-
Millis-Moriya model3–6 for a magnetic instability in a metal
assumes that only the dynamics of the paramagnons is im-
portant for the characterization of critical properties. Al-
though this assumption has proved to be successful in inter-
preting a number of experiments, it has failed to explain
consistently the properties of the heavy fermion compounds
CeCu6−xAux and YbRh2Si2.6,7 In particular, it has been ar-
gued that the latter system is characterized by the presence of
multiple scales,8 that might be due to the presence of coex-
isting dynamics. Theoretically, it is now established that the
assumptions of the Hertz-Millis-Moriya approach fail in the

case of the ferromagnetic instability.6 The coupling of the
ferromagnetic fluctuations to the fermionic degrees of free-
dom gives rise to singular corrections that prevent the for-
mulation of an effective theory exclusively in terms of order-
parameter fluctuations.9–12 The presence of multiple
dynamics is also important for the antiferromagnetic quan-
tum phase transition in metals in spatial dimension d=2; the
fermions mediate an effectively long-ranged interaction
among the paramagnons resulting in a strongly coupled
theory with multiple dynamical scales.13

Although quantum criticality with multiple dynamical
scales seems to be rather common, systematic investigations
are rare and the generic features of this problem are therefore
only poorly understood. The presence of coexisting dynam-
ics and, consequently, different dynamical exponents compli-
cates the analysis of experimental data considerably, as
simple scaling relations are bound to fail. Generally speak-
ing, different physical quantities might be dominated by one
or the other dynamics such that the interpretation in terms of
a single exponent z results in apparent inconsistencies. On
the theoretical side, a critical field theory with multiple ex-
ponents z promises to exhibit a rich structure. The modes
with the larger dynamical exponent z� have a larger phase
space available and are thus expected to dominate, e.g., the
specific heat. The modes with the smaller exponent z�, on
the other hand, have a smaller effective dimension d+z� and
might therefore trigger infrared singularities in perturbative
loop corrections. In addition, multiple dynamical exponents
imply multiple thermal scales �T with the concomitant cross-
overs. Instead of a single quantum-to-classical crossover one
expects an extended crossover regime with coexisting and
interacting quantum and classical fluctuations.

In the present work, we theoretically investigate these
phenomena in a simple model exhibiting multiscale quantum
criticality. Our aim here is not to go beyond the Hertz-Millis-
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Moriya framework. Instead, we still limit ourselves to an
effective bosonic theory where the fluctuations are however
characterized by multiple dynamical scales. To be specific,
we consider the effective Ginzburg-Landau theory for the
Pomeranchuk instability14 in an isotropic metal as proposed
by Oganesyan et al.15 The order parameter is given by the
shear modes of the Fermi sphere that drive a spontaneous
deformation of the Fermi surface at the instability resulting
in a “nematic” state. In d=2, there are two critical bosonic
shear modes characterized by different dynamical exponents.
Whereas one is damped by particle-hole excitations in the
metal and has a dynamical exponent z�=3, the other is bal-
listic and undamped with z�=2. We confine ourselves to two
spatial dimension, d=2, where symmetry consideration al-
low the Pomeranchuk transition to be of second order and
fluctuation corrections are pronounced.

The Pomeranchuk instability and its criticality has re-
ceived renewed interest in recent years. In analogy to para-
magnons close to a magnetic quantum phase transition in
metals, the critical collective shear fluctuations close to a
Pomeranchuk quantum critical point give rise to a singular
interaction among the fermionic degrees of freedom leading
to a breakdown of Fermi-liquid theory.15–17 The structure of
the critical theory, however, depends on the presence of an
underlying crystal lattice. Whereas in an isotropic metal the
Fermi-liquid properties are destroyed over the full Fermi
surface,15 well-defined quasiparticles partly survive if a crys-
tal lattice breaks rotational symmetry from the outset.16,17

Moreover, the aforementioned undamped z�=2 mode only
becomes critical in the isotropic case but is always gapped if
a crystal is present. A peculiarity of the nematic, i.e,
Pomeranchuk-ordered phase in an isotropic medium is the
existence of a Landau-damped Goldstone mode that also
leads to singular Fermi-liquid corrections thus providing a
rare example of an extended non-Fermi-liquid phase.15 An
extensive investigation of the mean-field properties of the
Pomeranchuk transition has been carried out by Yamase and
collaborators.18–21 A nonperturbative analysis of Pomeran-
chuk quantum criticality was presented in Refs. 22–24 and a
discussion of the Pomeranchuk instability from the perspec-
tive of Fermi-liquid theory was given by one of the
authors.25 Quintanilla et al.26,27 presented a careful study of
as to how the instability might arise from central interactions
among quasiparticles. Finally, the influence of disorder on
the transition was studied in Ref. 28. Nematic ordering was
also discussed extensively in the context of cuprate super-
conductors, for a recent review see Ref. 29. On the experi-
mental side, a metallic nematic phase in Sr3Ru2O7 close to
its metamagnetic transition has been reported by Borzi et
al.30,31 A Pomeranchuk instability in an isotropic metal, that
we consider here, has not been realized so far but might be
achievable in cold atom systems close to a Feshbach reso-
nance in a channel with higher angular momentum.

A. Summary of main results

In the literature, attention has been mainly focused on the
damped z�=3 component of the shear fluctuations. Ogane-
syan et al.15 even argued that the undamped z�=2 fluctuation

mode plays no role in the critical theory because its dynam-
ics seems to be irrelevant with respect to z�=3 scaling;
hence, the critical theory should be fully captured by a
Gaussian theory as the effective dimension d+z�=5 is larger
than the upper critical dimension of the effective �4 theory,
dc

+=4. In contrast to this, we find that the scaling arguments
of Ref. 15 are misleading and that the z�=2 mode is in fact
instrumental for the Pomeranchuk quantum phase transition
in d=2. The ballistic mode has an effective dimension
d+z�=4=dc

+, and it therefore generates important logarith-
mic singularities at T=0 in loop corrections. We treat these
singularities with the help of the renormalization group
�RG�. The derived RG equations identify the universality
class which bears signatures of the tensorial nature of the
shear fluctuations and differs, in particular, from the ones
with Ising as well as XY symmetry. By solving the RG equa-
tion, we find, for example, that the correlation length � di-
verges with vanishing distance to the quantum critical point,
r→0+, according to

�−2�T=0 �
r

�log �̄
2

r �4/9 , �1�

where �̄ is some momentum cutoff. The characteristic loga-
rithmic enhancement with exponent 4/9 explicitly demon-
strates that interactions among the z�=2 modes lead to quali-
tative corrections that are beyond Gaussian critical behavior.

At any finite temperatures, the coexisting dynamics im-
plies the presence of two thermal lengths, �T

��T−1/z� and
�T
��T−1/z�, that give rise to an interesting modification of

the quantum-to-classical crossover. Generally at criticality,
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FIG. 1. Effective dimensions of the longitudinal and transversal
shear fluctuations as a function of momentum q. The respective
thermal momenta, �T

−1�T1/z, separate two regimes where the fluc-
tuations have either a quantum character, q��T

−1, with effective
dimension d+z or a classical character, q��T

−1, with effective di-
mension d=2. There is an extended quantum-to-classical crossover
�gray shaded�, where the quantum regime of the transversal z�=2
mode overlaps with the classical regime of the longitudinal mode
z�=3.
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r=0, critical modes change their character at the momentum
scale of the inverse thermal length, q��T

−1. For larger mo-
menta q��T

−1, the fluctuations are essentially of a quantum-
mechanical nature because the associated Matsubara fre-
quencies can be approximated to be dense. For smaller
momenta q��T

−1, on the other hand, fluctuations are effec-
tively classical in the sense that they are dominated by the
Matsubara zero mode. In the presence of only a single ther-
mal length �T, an effective theory at criticality, r=0, can be
formulated that changes its character at the momentum scale
q��T

−1 from a quantum theory with dimension d+z to an
effective classical theory with dimension d, which is also
known as dimensional reduction.1,2,5,32 In the present prob-
lem of the Pomeranchuk instability we find, however, that it
is not possible to derive the critical properties from an effec-
tive classical model so that the concept of dimensional re-
duction breaks down. As illustrated in Fig. 1, the two thermal
lengths give rise to an extended intermediate momentum re-
gime where the z�=2 fluctuation mode is still quantum and
the z�=3 mode is already classical. Remarkably, it turns out
that interactions between quantum and classical fluctuations
with momenta belonging to this extended quantum-to-
classical crossover regime determine the critical properties at
r=0 resulting in the inapplicability of dimensional reduction.
At d+z�=4=dc

+, the z�=2 quantum fluctuations generate
scale-dependent vertices in loop corrections, that are in turn
probed by the classical z�=3 mode. This peculiar interplay
of quantum and classical fluctuations yields, for example, a
universal temperature dependence of the correlation length in
the low-T limit,

�−2�r=0 = CT, C = 4�1 − �2

3
�4/9� , �2�

where � and T are measured in dimensionless units to be
specified below. The T dependence is universal in the sense
that it does not depend on the value of the �4-interaction
amplitude although it is triggered by the very same interac-
tion. Note that the correlation length 	Eq. �2�
 is of the same
order as the thermal length �T

��T−1/2 which is a clear mani-
festation for the breakdown of dimensional reduction.

The coexistence of two dynamical scales is also reflected
in the phase diagram and in the critical thermodynamics. The
two thermal lengths �T

���T
� divide the disordered region of

the phase diagrams into three regimes, see Fig. 2: �I� a
low-temperature regime for ���T

�, �II� an overlap regime,
�T
�����T

�, and �III� a quantum critical regime, �T
���. Ne-

glecting logarithmic corrections, the two crossovers are lo-
cated in the phase diagram at T�r3/2 and T�r, respectively.
In the present work, we limit ourselves to the disordered side
of the phase diagram on the right-hand side of the Ginzburg
temperature, TG�r� �nonshaded in Fig. 2�.

It is a priori not clear which of the two crossover scales is
more important for thermodynamics. Our calculations reveal
that it depends in fact on the particular thermodynamic quan-
tity. Due to their larger phase space, the z�=3 fluctuations
dominate the specific-heat coefficient �. As a consequence, �
changes its behavior at the �I�/�II� crossover, ���T

�. The
thermal expansion, �, is at first sight also dominated by the

z�=3 mode. However, the repeated scattering of z�=2 quan-
tum fluctuations leads to a logarithmic dependence of the
thermal-expansion vertex. This in turn results in a sensitivity
of the thermal expansion on the �II�/�III� crossover too, and �
therefore changes its critical behavior at both crossovers. Fi-
nally, the asymptotic critical behavior of the compressibility,
	, is dominated by the z�=2 mode and it is thus sensitive to
the �II�/�III� crossover only. To summarize, the critical ther-
modynamics knows about both crossovers, �I�/�II� and �II�/
�III� in Fig. 2 and cannot be interpreted in terms of only a
single dynamical exponent.

B. Outline of the paper

In Sec. II, we review the derivation of the effective
Ginzburg-Landau theory of the Pomeranchuk instability in
an isotropic metal of Ref. 15. In addition, we discuss correc-
tions to the shear susceptibility beyond random-phase ap-
proximation �RPA�, and we point out the importance of ver-
tex corrections in order to maintain the z�=2 dynamics of
the undamped shear mode. Readers mostly interested in the
main results might directly proceed to Sec. III, where the
effective bosonic field theory is analyzed and the critical
thermodynamics is discussed. We end with a summary of the
results in Sec. IV. Detailed calculations are relegated to the
appendices.

II. POMERANCHUK INSTABILITY OF THE FERMI
LIQUID

We shortly review the derivation of the effective
Ginzburg-Landau theory for the Pomeranchuk instability of
an isotropic metal by closely following Oganesyan et al.15

We limit ourselves to considerations in spatial dimensions
d=2. The starting point is a model of spinless fermions in-
teracting via a quadrupolar interaction,

(III)
(II)

(I)

0 r

ξ ∼ ξ<
T

ξ>
T < ξ < ξ<

T

ξ < ξ>
T

T TG

FIG. 2. Phase diagram for the Pomeranchuk quantum phase
transition in d=2. The correlation length � and the two thermal
lengths, �T

��T−1/3 and �T
��T−1/2, distinguish three regimes: �I� a

Fermi-liquid regime where � is the smallest scale, �II� an overlap
regime where � is sandwiched between the two thermal lengths, and
�III� a quantum critical regime where ���T

� is the largest scale. The
line labeled TG�r� represents the Ginzburg temperature.
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S =� d
ddx��†g0
−1� +

F2

2
��†Q̂ij����†Q̂ji��� , �3�

where g0
−1�k , i�n�=−i�n+k−� is the fermionic

Green’s function. The operator Q̂ij is defined by its
Fourier transform with respect to the spatial coordinate,

�x
†Q̂ij�x�→�k

†Qij	�k+k�� /2
�k� where the quadrupolar
momentum tensor is

Qij�k� = dk̂ik̂ j − �ij , �4�

with d=2 and k̂i=ki /k and i , j� �1,2. The expectation

value ij = ��†Q̂ij�� is the quadrupole density and can be
interpreted as the traceless part of a strain tensor representing
the elastic shear modes of the Fermi sphere. With the help of
the Hubbard-Stratonovich transformation defined by the ac-
tion

S =� d
ddx��†g0
−1� −

1

2F2
�ij�ij + �ij��†Q̂ij��� , �5�

we can introduce the quadrupolar stress tensor �ij that is real,
symmetric, and traceless. Upon integrating out the fermionic
degrees of freedom one obtains an effective elasticity theory
for the Fermi liquid in terms of �ij.

General symmetry considerations require that its static
Ginzburg-Landau energy functional has the form

E	�
 = tr� r0

2
�2 −

K

2
��2� −

K2

12
�2D� +

u

12
�4 + . . .� �6�

with the quadrupolar gradient tensor Dij =d�i� j −�ij�
2. Note

that generally in d=2 a trace over a product of three quadru-
polar tensors vanishes. In particular, a term tr��D� is absent
so that there is only a single Frank constant K on the qua-
dratic level of the theory in the lowest-order gradient expan-
sion. In the following, we will neglect the term with constant
K2 as it is irrelevant for our considerations. We note in pass-
ing that the analyticity of the gradient expansion employed in
Eq. �6� is robust against interaction effects; it was argued in
Ref. 12 that the nonanalytic momentum dependences that are
generated close to a ferromagnetic quantum critical point are
absent for the Pomeranchuk instability.

The quadrupolar gradient tensor also allows for a cou-
pling of the shear modes to the compressional mode, i.e., the
isotropic density fluctuation, �n, in the Fermi liquid of the
form �n tr�D�. If this coupling is strong, it hybridizes the
two different modes giving rise to low-energy excitations at
some finite momentum. We will assume that this coupling is
sufficiently weak such that we can neglect the compressional
fluctuations in the following.

The dynamics of the shear modes �ij are derived from an
explicit calculation of the quadrupolar polarization of the
Fermi liquid.15 For this purpose, it is convenient to expand
the shear field at a given momentum q and Matsubara fre-
quency �n, �ij�q , i�n�, into components longitudinal and
transversal to the quadrupolar momentum tensor,

�ij�q,i�n� = ��q,i�n
Eij

� �q̂� + ��q,i�n
Eij

��q̂� . �7�

The matrices E�,� form a basis set for 2�2 real, symmetric,
and traceless tensors and are defined with respect to the mo-
mentum direction q̂=q /q,

Eij
� �q̂� =

1
�2

�2q̂iq̂j − �ij� =
1
�2

�q̂iq̂j − p̂ip̂j� , �8a�

Eij
��q̂� =

1
�2

�q̂ip̂j + p̂iq̂j� , �8b�

where the unit vectors p̂ and q̂ are orthogonal with
det�p̂ , q̂�=1. The basis set is normalized Eij

�Eij
�=���, with

� ,�� � � , � . The matrices of different basis sets transform
according to

Eij
��k̂� = U

k̂q̂

��
E��q̂� �9�

with the transformation matrix

Uk̂q̂ = � cos 2� sin 2�

− sin 2� cos 2�
� , �10�

where q̂k̂=cos � and p̂k̂=sin �. U describes a rotation but
with angle 2� reflecting the invariance of the quadrupolar
field under �=� rotations.

A. Quadrupolar polarization of free fermions

The quadrupolar polarization of the fermions, see
Fig. 3�a�, gives rise to a dynamical component of the shear
susceptibility tensor �ijkl= ��ij�kl�,

�0ijkl
−1 �q,i�n� = −

1

F2
1ijkl −�ijkl

0 �q,i�n� , �11�

where 1ijkl=
1
2 ��ik� jl+�il� jk−�ij�kl� is the projection onto the

2d quadrupolar subspace and �0 is the lowest-order quadru-
polar polarization of fermions,

�ijkl
0 �q,i�n� = −

1

�
�
k,�n

Qij�k�Qkl�k�

�g0�k +
q

2
,i�n + i�n�g0�k −

q

2
,i�n� .

�12�

In the basis �8� for the shear modes, the susceptibility
���

−1 =Eij
��ijkl

−1 Ekl
� reads

(a) (b) (c)

FIG. 3. Contributions to the quadrupolar polarization of the
Fermi liquid. Solid lines are fermion propagators, the dashed lines
are susceptibilities of shear fluctuations, and the vertex is given by

the quadrupolar gradient tensor Q̂ij. �a� polarization of free fermi-
ons, �b� and �c� lowest-order corrections.
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���
−1 �q,i�n� = −

1

F2
��� −���

0 �q,i�n� , �13�

where � ,�� � � , � . The polarization at zero external fre-
quency and momentum is given by the density of states
���

0 �0,0�=����. The criterion ���
−1 �0,0�=0 for the Pomeran-

chuk instability to occur translates to14

�F2 = − 1. �14�

The dynamic part of the polarization is also diagonal in the
basis �8�. Its longitudinal part reduces to

�� �
0 �q,i�n��dyn = − i�n��

0

2� d�

2�

2 cos2 2�

i�n − vFq cos �

� − 2�
��n�
vFq

. �15�

For the transversal part one obtains instead

���
0 �q,i�n��dyn = − i�n��

0

2� d�

2�

2 sin2 2�

i�n − vFq cos �

� − 4�� �n

vFq
�2

. �16�

The integral over the angle � takes into account the possible
relative orientations of the mean Fermi velocity of the
particle-hole pair and the momentum of the shear fluctua-
tions, q; the � dependence of the weight distinguishes the
longitudinal from the transversal mode. The approximations
in Eqs. �15� and �16� are valid to lowest order in �n / �vFq�.

The origin of the different dynamics of the two modes is
illustrated in Fig. 4. The quadrupolar fluctuation of the Fermi
sphere cuts the undistorted sphere in four nodes. The nature
of the Pomeranchuk dynamics depends on the relation be-
tween the location of these nodes and the direction of
bosonic momentum q. In the low-energy limit ��vFq, the
bosonic momentum q is approximately tangential to the
Fermi surface. Near the antinodes, see Fig. 4�a�, Landau
damping is active and the longitudinal quadrupolar mode is
damped by exciting particle-hole pairs, Eq. �15�. Near the

nodes, on the other hand, the lack of phase space for exciting
particle-hole pairs results in an undamped dynamics for the
transversal mode, Eq. �16�, see Fig. 4�b�.

In the lowest order in frequency and momentum, the
shear susceptibility 	Eq. �13�
 is diagonal in the basis �8�,
�0��

−1 =����0��
−1 , with the two components,

�0� �
−1 �q,i�n� = r0 + Kq2 + �

��n�
vFq

, �17a�

�0��
−1 �q,i�n� = r0 + Kq2 + ��

�n
2

�vFq�2 , �17b�

where r0=−1 / �F2�−� and �=�� /2=2�. Note that the
Franck constant K, see Eq. �6�, is not determined by the
low-energy properties of the model 	Eq. �3�
 but depends on
the details of the electron band structure.

As advertised, from Eqs. �17� it follows that the dynamics
of the shear fluctuations are characterized by two different
dynamical exponents that define the dispersion of the two
eigenmodes, ��qz, at criticality r0�0. Whereas the damped
longitudinal mode has z�=3, the dynamical exponent of the
undamped transversal mode is instead z�=2. Note that sym-
metry ensures that both modes have the same tuning param-
eter r0 even after including interaction corrections and they
become simultaneously critical. The Pomeranchuk quantum
critical point is thus a natural candidate to study the interplay
of critical modes with different dynamics.

B. Corrections to the quadrupolar polarization of free
fermions

One may wonder whether the dynamics of the shear sus-
ceptibility 	Eq. �17�
 is robust or gets modified in higher-
order loop corrections. The damped longitudinal shear fluc-
tuations couple back to the fermions resulting in singular
self-energy corrections.15 The resulting non-Fermi liquid
might screen the shear fluctuations in a different manner than
the Fermi liquid maybe leading to a modification of the ef-
fective shear-fluctuation dynamics. It was speculated in
Ref. 25 that this feedback might alter the dynamics of the
transversal mode and change its dynamical exponent.

A detailed analysis of the next-to-leading loop diagrams
in Figs. 3�b� and 3�c� is presented in Appendix A. We indeed
find that by considering only the quadrupolar polarization
diagram �b� containing the singular self-energy correction
one would erroneously conclude that the dynamics of
the transversal fluctuations gets modified from z�=2 to
z�=12 /5, see Eq. �A12�. However, it turns out that the con-
tribution from the singular self-energy in diagram �b� is just
canceled by the vertex correction displayed in Fig. 3�c�.
Similar cancellations of singular self-energy and vertex con-
tributions in the electron polarization are well known, for
example, from the problem of electrons coupled to a Landau-
damped gauge field.33–35 The root of this cancellation is the
Ward identity deriving from particle number conservation.36

Upon including both diagrams �b� and �c�, we finally arrive
at the result that the dynamics of the shear fluctuations
	Eq. �17�
 is robust with respect to the lowest-order correc-

(a) (b)

q

q

FIG. 4. �Color online� Visualization of a quadrupolar fluctuation
�black solid line� of the 2d isotropic Fermi sphere �gray solid line�.
�a� The longitudinal mode is damped by exciting particle-hole pairs
close to the Fermi surface, Eq. �15�. �b� For the transversal mode
the momentum q of the fluctuation is close to a node such that there
is not sufficient phase space for Landau damping, Eq. �16�.
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tions to the free-fermion quadrupolar polarization. In the
present problem of the Pomeranchuk instability, self-energy
and vertex corrections thus have to be treated on the same
footing in order to maintain the dynamics of the shear
modes. Note that for this reason a simple version of Eliash-
berg theory, which neglects the vertex diagram Fig. 3�c�, is
not applicable.

In the following, we will take the form of the dynamics
for the shear fluctuations for granted that derive from the
free-fermion polarization, Eqs. �17�. Using this dynamics, we
then consider the effective Ginzburg-Landau theory for the
shear modes in the spirit of Hertz.3

III. GINZBURG-LANDAU THEORY FOR POMERANCHUK
QUANTUM CRITICALITY

From the static energy functional 	Eq. �6�
 and the shear
susceptibility 	Eq. �17�
 we can construct an effective
Ginzburg-Landau theory for the shear modes, �ij, of the
Fermi sphere,

S	�
 =� d
ddx�1

2
�ij�ijkl

−1 �kl +
u

12
tr��4� . �18�

We limit ourself to spatial dimensions d=2. As already men-
tioned in the context of Eq. �6�, a third-order term tr��3
vanishes in d=2. Expanding the shear modes in the basis �8�
with respect to a fixed momentum direction, say E��êy� with
det�êy , êx�=1, the theory takes the form of a �4 theory of a
two-component field �= ��1 ,�2�,

S	�
 =� d
ddx�1

2
�T�−1� +

u

4!
��T��2� . �19�

For the susceptibility �, we use the free-fermion form
	Eq. �17�
 derived in Sec. II A. It is a 2�2 matrix given by

�q,i�n

−1 = Uêyq̂ diag��� �q,i�n

−1 ,���q,i�n

−1 Uêyq̂
T , �20�

where the transformation matrix Uêyq̂ is defined in Eq. �10�.
The longitudinal and transversal components of the suscep-
tibility are

�� �
−1�q,i�n� = r + q2 + ��

��n�
q

, �21�

���
−1 �q,i�n� = r + q2 + ��

2 �n
2

q2 �22�

with a conveniently rescaled momentum and temperature;
�� and �� are dimensionless �positive� parameters. Note
that we could have chosen units such that either �� or �� is
unity so that one of them is in fact redundant; we deliber-
ately keep here both explicitly for later convenience. After
rescaling, the dimensionless length and temperature are mea-
sured in units of 	�K /�
 and 	vF

�� /K
, respectively, where
K is the Franck constant, � is the fermionic density of states,
and vF is the Fermi velocity. The parameter r controls the
distance to the Pomeranchuk transition and the interaction
amplitude is u.

A. Perturbative renormalization group at T=0

The transversal component of the shear modes with sus-
ceptibility ��� has dynamical exponent z�=2 and thus an
effective dimension d+z� equal to the upper critical dimen-
sion dc

+=4 of the �4 theory 	Eq. �19�
. Perturbation theory in
the interaction u at temperature T=0 is therefore accompa-
nied by logarithmic singularities which we sum up with the
help of an one-loop RG treatment.

Consider the perturbative corrections in Fig. 5. For their
evaluations the angular averages of shear-mode propagators
given in the Appendix B are needed. The one-loop self-
energy diagram �a� leads to a shift of the tuning parameter
r→r+�r,

�r =
u

3

1

�
�

q,�n

��� �q,i�n
+ ���q,i�n

� . �23�

Similarly, the vertex correction �b�, u→u+�u, is given by

�u = −
2u2

4!

1

�
�

q,�n

	9��� �q,i�n

2 + ���q,i�n

2 � + 2�� �q,i�n
���q,i�n


 .

�24�

As usual, the renormalization of the control parameter
	Eq. �23�
 yields a nonuniversal shift, which depends on the
UV cutoff of the integrals. In the following, we assume that
such finite renormalizations have been already absorbed by
appropriate counterterms.2 In addition, the diagram �a� gives
a universal albeit logarithmically divergent correction pro-
portional to the control parameter, r, itself arising from the
transversal z�=2 quadrupolar mode,

��r

�r
� −

u

3

1

�
�

q,�n

���q,i�n

2 � −
u

24���
log� ��r

� . �25�

In the last expression, we evaluated the integrals at T=0 with
a sharp momentum cutoff � and kept only the leading loga-
rithmic term. Similarly, we get for the vertex correction

�u � −
2u2

4!
9

1

�
�

q,�n

���q,i�n

2 � −
3u2

32���
log� ��r

� . �26�

Equations �25� and �26� are the only logarithmic singularities
encountered in lowest-order perturbation theory. In order to
treat these singularities, we apply the renormalization group
and perturbatively integrate out modes within a momentum
shell �� /b ,�� with log b�1. After such a single RG step,
the momentum cutoff of the perturbatively corrected theory
is restored to � by rescaling momenta q→q /b and frequen-
cies �→� /bz with some dynamical exponent z. As we treat
a theory with multiple dynamical scales, one may wonder

(a) (b)

FIG. 5. One-loop corrections for the effective theory 	Eq. �18�

of the shear modes.
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what kind of value to choose for z in this RG process. It is
instructive to leave the value for z here unspecified in order
to discuss later possible choices. Of course, the result for
physical observables will turn out to be independent of the
precise choice for z. Using the renormalization-group condi-
tions that the prefactor in front of the momentum depen-
dence, q2, of the susceptibilities, Eqs. �21� and �22�, remains
unity, the perturbative renormalized parameters can then be
read off. The scaling of the dynamical parameters, �� and
��, at one-loop order is simply obtained from power count-
ing

���
� log b

= �z� − z���, �27a�

���
� log b

= �z� − z���, �27b�

where again z�=2 and z�=3. The one-loop corrections to
tree-level scaling for the control parameter, r, and the inter-
action, u, at T=0 follow directly from Eqs. �25� and �26�,

�r

� log b
= �2 −

1

24���
u�r , �28a�

�u

� log b
= �4 − d − z�u −

3

32���
u2, �28b�

with d=2. These RG equations are characteristic for the uni-
versality class of the Pomeranchuk transition and are an im-
portant result of this work.

Let us remark on the ambiguity with respect to the choice
of z, that determines the tree-level scaling in Eqs. �27� and
�28�. First of all, note that for all choices of z�2 the tree-
level scaling suggests that the quartic coupling u as well as
the dynamical parameter �� are irrelevant.15 Nevertheless,
we know from the perturbative results, Eqs. �25� and �26�,
that there exists a nontrivial marginal operator. Indeed, closer
inspection of the RG equations readily shows that the quartic
coupling enters the RG flow only in the combination

ũ �
u

��
. �29�

Correspondingly, the Eqs. �28� can be combined with
Eq. �27b� to give

�r

� log b
= �2 −

1

24�
ũ�r , �30a�

� ũ

� log b
= −

3

32�
ũ2. �30b�

The seemingly irrelevant parameters u and �� thus conspire
to yield in fact a marginal operator with amplitude
ũ=u /��. Note, in particular, that Eqs. �30� are independent
of the specific choice of z.

The freedom to choose the exponent z can now be ex-
ploited to simplify the RG flow in Eqs. �27�. There are two
evident choices, z=z� or z=z�, that eliminates the flow of

one redundant scaling variable, i.e., either �� or ��, respec-
tively. For z=z� the remaining flow of the dynamical param-
eter �� is unbounded, ��→� whereas for z=z� the other
parameter flows to zero, ��→0. That means that depending
on the choice of z either 1 /�� or �� is irrelevant in the RG
sense. Taken together, the RG flow has either the critical
fixed point r= ũ=1 /��=0 or r= ũ=��=0, respectively.
However, note that both fixed points are only of limited use
when computing physical properties. The reason is that both,
1 /�� and ��, are in fact dangerously irrelevant for the re-
spective choices of z. When considering, e.g., the critical
thermodynamics, it turns out that neither 1 /��→0 nor
��→0 is a well-defined limit, which is the very definition of
a dangerously irrelevant variable,37 see Appendix C �subsec-
tion�. Nevertheless, let us stress that any choice of z for the
RG yields, of course, the same result when computing criti-
cal properties of physical observables.

The Eqs. �30� is readily solved. The running coupling
ũ�b� is given by

ũ�b� =
32�

3

1

log��̄b/��
�31�

with �̄=�e32���/�3u�. The scale dependence of the coupling
ũ=u /�� can be interpreted as an effective quartic vertex,

ueff�q,�,T,�� =
32���

3

1

log��̄/max�q,�1/z�,T1/z�,1/��
,

�32�

that depends on momentum, frequency, temperature, and cor-
relation length �. The full quartic vertex generally depends
on four momenta and frequencies. However, to logarithmic
accuracy we can take q=max�qi and �=max��i. It is im-
portant to note that it is the dynamical exponent of the trans-
versal mode z�=2 according to which the momentum scale
is translated to energies in Eq. �32� as it is this very same
mode that induces the logarithmic dependence of the vertex.

B. Correlation length

We compute the dependence of the correlation length � on
the control parameter, r, and temperature, T. We distinguish
between the regimes �I�, �II�, and �III� of the phase diagram
in Fig. 2. Whereas in regimes �I� and �II� the correlation
length is determined by the zero-temperature flow of the con-
trol parameter, Eq. �28a�, it is dominated by temperature, T,
in regime �III�. Remarkably, this latter T dependence is found
to be universal independent of the quartic interaction u. This
universality arises from a peculiar interplay of logarithmic
singularities of different origin.

1. Correlation length in regime (I)

Consider first the correlation length at temperature T=0,
where it is determined by the RG flow of the control param-
eter 	Eq. �28a�
. With the help of expression �31� for the
running quartic coupling, we can solve for the running r�b�
from which follows the correlation length at zero tempera-
ture �−2 �T=0=r�b� /b2 �b=��,
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�−2�T=0 �
r

�log �̄
�r�4/9 . �33�

This logarithmic enhancement of the correlation length was
already advertised in Eq. �1�. The exponent 4/9 is character-
istic for the Pomeranchuk universality class. It is instructive
to compare this exponent with the value obtained from a
O�N�-symmetric �4 theory with a propagator containing
only the z�=2 dynamics, ���

−1 =������
−1 and � ,�=1, . . . ,N.

In such a case, one would obtain the exponent
�N+2� / �N+8� instead of 4/9. In particular, note that the Ising
�N=1� value 3/9 as well as the XY �N=2� exponent 4/10
differ from the value we obtain for the Pomeranchuk transi-
tion. The difference to the Ising exponent 3/9 clearly indi-
cates that the model 	Eq. �19�
 cannot effectively be reduced
to a �4 theory of a single-component field with dynamics
z�=2 as one might naively expect. The origin of the anoma-
lous value 4/9 of the exponent in Eq. �33� can be traced back
to the result of angular averages over shear-mode propaga-
tors, Eqs. �B1�, and thus reflects the topology of the shear
field.

At finite temperatures, the correlation length also acquires
a T dependence. In the low-temperature regime �I� of the
phase diagram in Fig. 2, this T dependence is only a sublead-
ing correction to Eq. �33� and can be computed within renor-
malized perturbation theory from the diagram in Fig. 5�a�. It
is the thermal occupation of z�=3 fluctuations that yields
the dominant T correction, which is of Fermi-liquid type,
�−2−�T=0

−2 �O�ueffT
2�3�, where ueff� ũ���� is the quartic

coupling 	Eq. �31�
 at the scale b=��.

2. Correlation length in regimes (II) and (III)

The temperature dependence of the correlation length in
regimes �II� and �III� arises from a subtle interplay of loga-
rithmic IR singularities driven by quantum and classical fluc-
tuations. In order to illustrate this peculiar low-energy struc-
ture of the theory, consider first the T dependence of the
control parameter deriving from the perturbative one-loop
correction �a� in Fig. 5,

�r − �r�T=0 =
u

3
�

0

� dqq

2�
�

0

� d�

�
�coth

�

2T
− 1�

�Im��q,�+i0
� � + �q,�+i0

��  . �34�

As before, it turns out that it is the contribution of the lon-
gitudinal susceptibility �� � that gives the leading T depen-
dence in regimes �II� and �III�. Furthermore, in d=2 the in-
tegral 	Eq. �34�
 is dominated by the limit of small
frequencies � in these regimes, i.e., the classical limit of the
hyperbolic coth function corresponding to the contribution of
the Matsubara zero mode. Generally, the classical limit is
applicable whenever the frequency is smaller than tempera-
ture, ��T. Using the scaling relation, ��qz� this translates
to a regime of momenta, q��T

�−1, with the thermal length
�T
��T−1/z�, where the associated fluctuations have a classi-

cal character, see Fig. 1,

�r − �r�T=0 �
uT

3
�

0

�T
�−1 dqq

2�
�� ��q,� = 0� . �35�

In the classical regime, the renormalized susceptibility
reduces to �� �

−1�q�=�−2+q2, and the momentum integral in
Eq. �35� will be cut off by the inverse correlation length 1 /�
at small q. Anticipating that the correlation length itself is
either given by ��1 /�T in regime �III� or approximately by
Eq. �33� in regime �II�, the momentum integral in Eq. �35�
extends over a parametrically large range 1 /��q�T1/3,
where it is logarithmically enhanced. However, in this mo-
mentum range the transversal mode still possesses its quan-
tum character, see Fig. 1. As we showed in the previous
section, for momenta larger than the inverse correlation
length, q�1 /�, the vertex acquires an effective scale depen-
dence due to the repeated scattering of quantum fluctuations
in the transversal channel, see Eq. �32�. As the integral in
Eq. �35� is logarithmically enhanced, the temperature correc-
tion turns out to be sensitive to this scale dependence of the
vertex which becomes apparent in higher-order loop correc-
tions. The scale dependent vertex 	Eq. �32�
 is thus probed
by the classical fluctuations in the longitudinal channel with
momenta belonging to the extended quantum-to-classical
crossover regime �T1/2 ,T1/3� of Fig. 1. In order to determine
the correlation length it is therefore insufficient to limit one-
self to the lowest-order diagram �a�.

Instead, we apply the RG generalized to finite T, see Ap-
pendix C. When the cutoff is lowered down to a value on the
order of the inverse thermal length �T

�−1 corresponding to a
scale b���T

�, the contribution arising from the integral
	Eq. �35�
 translates to a modification of the zero-
temperature flow in Eq. �28a�. The classical longitudinal
fluctuations give rise to an accelerated flow of the running
control parameter r�b� setting in at the scale b���T

�,

�r

� log b
= �2 −

1

24���
u�r +

1

6�
uT�b−��T

�, �36�

where �x=1 if x�0 and 0 otherwise. The flow of the quartic
coupling is still given by Eq. �28b� and the temperature has
the scale dependence T�b�=Tbz. Solving for r�b� and identi-
fying the correlation length with �−2=r�b� /b2 �b=��, we get
the following implicit equation for � valid in regimes �II� and
�III� of the phase diagram in Fig. 2,

�−2 = r� log �̄/�

log �̄�
�4/9

+ 4��T�1 − � log �̄�T
�

log �̄�
�4/9�

�37�

with �T
��T−1/3. The first term dominates in regime �II� and

yields a value for � that coincides with expression �33�. The
second term originates from the accelerated RG flow due to
the classical fluctuations in the longitudinal channel. This
acceleration acts on scales in the window ��T

��b���,
which can be identified with the momentum range in Fig. 1
where the quantum regime of the transversal mode overlaps
with the classical regime of the longitudinal fluctuations.
This T dependence dominates the correlation length in the
quantum critical regime �III�.
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At criticality r=0, Eq. �37� is easily solved iteratively and
we get a universal asymptotic behavior at low temperatures,

�−2�r=0 = C��T, C = 4�1 − �2

3
�4/9� . �38�

This reduces to Eq. �2� in Sec. I A after exploiting the free-
dom to choose temperature units such that ��=1, cf. the
remark below Eq. �22�. Note that the temperature depen-
dence of � is here independent of the bare value of the quar-

tic coupling u. It enters the implicit Eq. �37� via �̄ defined
below Eq. �31� but drops out in the asymptotic limit T→0.
This universal temperature dependence originates from an
intricate interplay of quantum fluctuations in the transversal
channel and the classical shear fluctuations in the longitudi-
nal channel.

3. Ginzburg temperature

Our perturbative treatment finally breaks down when clas-
sical loop corrections start to dominate. This is the case when
the Ginzburg parameter is on the order of one, G=ueffT /�−2,
where ueff� ũ���� is the running vertex 	Eq. �31�
 at the
scale b=��. The criterion G�1 identifies the Ginzburg tem-
perature TG�r�. In the asymptotic low-temperature limit, the
Ginzburg temperature is given by

TG�r� � −
r

�log �̄

��r� �4/9 �39�

and is shown in Fig. 2.

C. Critical thermodynamics

The presence of two dynamical scales gives rise to two
crossover lines in the phase diagram, see Fig. 2. In the
present section, we investigate how these crossovers affect
the critical thermodynamics.

The critical free energy, Fcr, depends on the control pa-
rameter, r, and temperature, T. We consider the thermody-
namic quantities that correspond to the three second-order
derivatives of Fcr with respect to r and T. The derivative,
�cr=−�2Fcr /�T2 is the specific-heat coefficient. We discuss
the derivatives with respect to r in the language of a
pressure-tuned quantum phase transition. If the control
parameter depends smoothly on pressure, r=r�p�, derivatives
with respect to r effectively correspond to derivatives
with respect to p.38 Consequently, the quantity
�cr=�2Fcr / ��T�r� can be identified with the thermal expan-
sion and 	cr=−�2Fcr /�r2 parallels the critical contribution to
the compressibility.

It is instructive to discuss the asymptotic behavior close to
criticality within a renormalized Gaussian model, where the
free energy is given by

Fren.Gauss =
1

2
� d2q

�2��2

1

�
�
�n

log det �−1�q,i�n��r→�−2

�40�

with the susceptibility tensor of Eq. �20� but with the control
parameter replaced by the correlation length, r→�−2. The

approximate expression �40� for the free energy accounts for
most of the critical behavior except the thermal expansion in
regimes �II� and �III�, and the compressibility in regime �I� of
Fig. 2. In order to obtain the correct asymptotic behavior of
the latter, we have to resort to a proper RG improved treat-
ment. The quantum fluctuations of the z�=2 mode lead here
to scale-dependent vertices that are beyond the renormalized
Gaussian form of Eq. �40�. Below, we only present the result
of the asymptotic critical behavior and refer the reader to
Appendix C for its derivation.

1. Specific-heat coefficient

The critical specific heat, �cr=−�2Fcr /�T2, is dominated
by the damped z�=3 shear fluctuations because their avail-
able phase space is larger. Their contribution to the specific
heat can be derived within the renormalized Gaussian model
with a free energy given by Eq. �40�. In the low-temperature
regime �I� of Fig. 2, the critical specific heat is temperature
independent in the limit T→0,

�cr � ��
�log �̄

�r�2/9

r1/2 �I� . �41�

In the overlap �II� and quantum critical regime �III�, we get

�cr � T−1/3 �II� and �III� . �42�

The undamped z�=2 mode adds a subleading correction,
which is on the order O�T�2� in regimes �I� and �II�, and
O�1� in regime �III�. Only the subleading corrections to
�cr distinguish the regimes �II� and �III�. Note that the
z�=2 mode, nevertheless, leaves its traces in �cr via the
logarithmic renormalization entering the correlation length in
regime �I�.

2. Thermal expansion

The dependences of the thermal expansion, defined as
�cr=�Fcr / ��r�T�, is more delicate. It is again the large phase
space of the z�=3 mode that is the main driving force. In the
low-T regime �I�, �cr can still be understood within the renor-
malized Gaussian model 	Eq. �40�
,

�cr � T�3��−2

�r
�

T

r3/2�log
�̄

�r
�2/9

�I� . �43�

This leading contribution is attributed to the z�=3 part of
Eq. �40�. The z�=2 mode again enters here indirectly in the
form of the logarithmically renormalized correlation length.

Interestingly, the critical thermal expansion, �cr, within
the regimes �II� and �III� is more involved. Let us first dis-
cuss the result one would obtain from the renormalized
Gaussian model 	Eq. �40�
. In d=2, it is the classical Mat-
subara zero mode that gives the dominating contribution to
�cr,

�cr � �
0

�T
�−1

dq
q

�−2 + q2

��−2

�r
. �44�

We only retained the part due to the classical z�=3 mode
here; the additive classical z�=2 contribution is cut off at the

MULTISCALE QUANTUM CRITICALITY: POMERANCHUK… PHYSICAL REVIEW B 80, 165116 �2009�

165116-9



smaller momentum scale �T
�−1 instead and turns out to be

subleading. The derivative ��−2 /�r can be interpreted as an
effective vertex that is, in general, scale dependent due to the
RG flow of the control parameter discussed in the context of
Eq. �28a�. As the momentum integral in Eq. �44� covers the
overlap regime �1 /� ,1 /�T

��, where the z�=2 fluctuations are
still quantum, cf. Fig. 1, this scale dependence is fully devel-
oped in the important integration range and has to be taken
into account. Similarly as for the correlation length, the
quantum fluctuations of the z�=2 mode here give rise to a
scale-dependent vertex that is probed by the classical fluc-
tuations of the z�=3 mode. The critical thermal expansion is
thus beyond renormalized Gaussian but can be obtained from

Eq. �44� by replacing ��−2 /�r→1 / 	log��̄ /q�
4/9. So we fi-
nally get to logarithmic accuracy

�cr � �
�−1

�T
�−1 dq

q

1

	log��̄/q�
4/9
�II� and �III� �45�

whose asymptotic limit depends on whether the correlation
length is temperature dominated, �III�, or r dominated, �II�.
To summarize, we have

�cr ��
T

r3/2�log
�̄

�r
�2/9

�I�

�log
�̄

�r
�5/9

�II�

�log
�̄

�T
�5/9

�III�
� . �46�

The thermal expansion thus changes its behavior at both
crossovers in Fig. 2.

3. Compressibility

The scale-dependent vertex in Eq. �45� is also important
for the critical compressibility, 	cr=−�2Fcr /�r2. In the low-
temperature �I� and overlap regime �II�, the Gaussian free
energy 	Eq. �40�
 predicts a logarithmic divergence of the
critical compressibility due to the undamped z�=2 shear
fluctuations

	cr � �
�−1

dk

k
� ��−2

�r
�2

. �47�

The correct behavior again follows upon RG improvement

by replacing the vertex ��−2 /�r→1 / 	log��̄ /k�
4/9,

	cr � �log
�̄

�r
�1/9

�I� and �II� . �48�

Alternatively, this result can be derived directly from the
nontrivial RG flow of the critical free energy as explained in
Appendix C. Note that the logarithmic divergence of the
compressibility as r→0+ indicates that a coupling of other
degrees of freedom to the square of the shear field tr��2
might be nonperturbative.39

In the quantum critical regime �III�, on the other hand, the
correct asymptotics can again be obtained from Eq. �40�,

	cr � �log
�̄

�T
�−8/9

�III� . �49�

Both modes contribute to this logarithmic dependence of the
compressibility. While the z�=3 fluctuations contribute only
with their classical component, i.e., Matsubara zero mode,
remarkably, all Matsubara frequencies of the z�=2 fluctua-
tions add to the logarithmic dependence 	Eq. �49�
 because
���T

� in regime �III�.
So we find that the asymptotic behavior of the critical

compressibility is only sensitive to the �II�/�III� crossover.

IV. SUMMARY

We considered the problem of multiscale quantum criti-
cality by studying the effective bosonic model of a quad-
rupolar Pomeranchuk instability in an isotropic metal in
spatial dimension d=2. This theory consists of two criti-
cal bosonic shear modes of the Fermi sphere character-
ized by different dynamics, resulting in a quantum criticality
with multiple scales. While the longitudinal shear fluctua-
tions are Landau damped and have a critical dynamical
exponent z�=3, the transversal modes are undamped with
z�=2.15

First, we studied the case of zero temperature. There we
found that the low-energy properties are governed by the
mode with the smaller effective dimension d+z�, i.e., the
transversal shear fluctuations. Since that effective dimension
is equal to the upper critical dimension, dc

+=4, of the effec-
tive �4 theory, its self-interactions give rise to logarithmic
singularities in perturbation theory and, as a consequence, to
a nontrivial RG flow of the theory, Eqs. �28�. The interaction
amplitude is found to be marginally irrelevant in the RG
sense so that the low-energy quantum critical fixed point is
Gaussian. Nevertheless, as usual the slow flow of the inter-
action amplitude toward weak coupling gives rise to qualita-
tive corrections to Gaussian behavior. These corrections con-
sist of, e.g., a logarithmic enhancement of the correlation
length, Eq. �33� and a logarithmically diverging compress-
ibility, Eq. �48�, whose functional form is characteristic for
the Pomeranchuk universality class.

Second, we investigated the critical properties at finite
temperatures. A salient feature of quantum criticality, in gen-
eral, is the quantum-to-classical crossover1,2,5,32 associated
with the thermal length, �T�T−1/z. In the language of cross-
over theory,40 the renormalization-group flow of a quantum
critical model on short scales is first governed by the primary
quantum critical, T=0, fixed point, but at a scale on the order
of �T the flow crosses over toward the secondary classical
critical fixed point, that controls it for large scales. In the
presence of multiple dynamical scales, we find instead a
quantum-to-classical crossover regime, which extends over a
parametrically large range bounded by the two thermal
lengths, �T

��T−1/z� and �T
��T−1/z�. In this extended cross-

over regime, the transversal shear fluctuations �z�=2� still
possess a quantum-mechanical character and drive the theory
toward the primary quantum fixed point whereas the longi-
tudinal mode �z�=3� is already classical and competes to

ZACHARIAS, WÖLFLE, AND GARST PHYSICAL REVIEW B 80, 165116 �2009�

165116-10



push the theory toward the secondary classical fixed point,
see also Fig. 1.

We find that this extended quantum-to-classical crossover
determines the critical properties in the quantum critical re-
gime �III� of the phase diagram in Fig. 2. Remarkably, the
correlation length, �, depends here on temperature in a uni-
versal manner, Eq. �38�. This universality emerges via a pe-
culiar interplay of logarithmic singularities of different ori-
gin. These singularities arise as the transversal quantum
fluctuations have an effective dimension d+z�=dc

+ equal to
the upper, dc

+=4, and the longitudinal classical fluctuations
have an effective dimension d=dc

− equal to the lower critical
dimension, dc

−=2, of the respective �4 theories. We showed
that the interaction of these modes results in a T-dependent
boost in the RG flow of the control parameter, Eq. �36�, that
finally determines the T dependence of �.

The two thermal lengths, �T
� and �T

�, also identify cross-
over lines in the phase diagram Fig. 2 where the critical
thermodynamics changes qualitatively. The sensitivity on
these crossovers, however, differs for different thermody-
namic quantities depending on whether they are dominated
by the z�=3 or the z�=2 fluctuations. As a consequence, an
interpretation in terms of scaling relations involving only a
single dynamical exponent is, in general, not possible.

To summarize, we found a series of phenomena arising
from the presence of coexisting dynamics, which might be
generic for quantum critical systems with multiple scales. So
we identified �a� an extended quantum-to-classical crossover
as summarized in Fig. 1, with an intermediate momentum
regime where quantum and classical fluctuations coexist and
their interaction profoundly affects the critical behavior. The
multiple scales are �b� reflected in the crossover lines in the
phase diagram, see Fig. 2. We found that �c� certain type of
thermodynamic quantities are governed by one or the other
dynamics so that �d� simple scaling relations in terms of a
single dynamical exponent are not applicable. Our study
shows that multiple scales at quantum criticality can yield a
rich phase diagram, complex critical properties, and even
emerging universality.
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APPENDIX A: EFFECTIVE FERMION-BOSON THEORY
FOR THE POMERANCHUK QUANTUM PHASE

TRANSITION

In order to study the shear susceptibility close to the Po-
meranchuk quantum critical point beyond the free-fermion
form, viz., RPA, see Eqs. �17�, we consider the following
fermion-boson model:

S	�†,�,�
 =� d
ddx��†g0
−1� +

1

2
�ij�0ijkl

−1 �kl

+ �0
ijkl�ij�

†Q̂kl�� , �A1�

where g0 is the fermionic Green’s function given below

Eq. �3�, �0 is the shear susceptibility 	Eq. �17�
, and the
vertex is �0

ijkl=1ijkl� with the coupling constant �.
The bosonic self-energy in second order in �, see

Fig. 3�a�, will only shift the bare parameters of the suscepti-
bility �0�q , i�n� but maintains the form of its �n and q de-
pendence. To indicate this renormalization, we will drop the
index 0 and consider the parameters of � as having effective
values that have to be determined self-consistently. The cor-
rections in higher order O��4� to the quadrupolar polariza-
tion in Figs. 3�b� and 3�c� involve the lowest-order fermionic
self-energy and vertex correction, respectively. We consider
them first before turning to the discussion of the corrections
to the shear susceptibility.

1. Fermion self-energy

We calculate the fermionic self-energy,  =g−1−g0
−1. In

second order in the coupling �, see Fig. 6�a�, it reads

 �k,i�n� = − �2 1

�
�

q,�n

Qij�k −
q

2
�Qkl�k −

q

2
�

��ijkl�q,i�n�g0�k − q,i�n − i�n� . �A2�

Taking into account that q is small compared to the Fermi
wave vector this simplifies to

 �k,i�n� � − �2Qij�k�Qkl�k�

�
1

�
�

q,�n

�ijkl�q,i�n�
− 1

i�n − i�n − k + vFq

�A3�

with vF=vFk̂. The important contribution to the self-energy
originates from the longitudinal part of the susceptibility

 �k,i�n� � �2 1

�
�
�n

�
0

� dqq

�2��2�� ��q,i�n�

� �
0

2�

d�
2 cos2 2�

i�n − i�n − k + vFq cos �
.

�A4�

Close to the Fermi surface, this evaluates to

q

k − qk k

(a)

ijkl

k + q′ + q

k + q′

q
q′

k + q

kl
k(b)

ij

mn

FIG. 6. �a� Fermion self-energy and �b� vertex correction of the
model 	Eq. �A1�
. For clarity, we dropped the frequency labeling.
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 �i�n� = − i
�2

�2vF
sign �n�

0

��n�

d��
0

�

dq�� ��q,i��

= −
�2

vF�0��0
1/3i��n�2/3sign �n if ��n�! �r�3/2

1

2�

i�n

�r
if ��n�� r3/2 � ,

�A5�

where �0
1/3= 1

��3
� vF

��0
�1/3. Note that the leading-order contribu-

tion only involves the frequency dependence.
The self-energy of the form �A5� is well known from the

problem of electrons coupled to a Landau-damped gauge
field33–35 and ferromagnetic quantum criticality in metals.12

2. Vertex correction

The lowest-order vertex correction, ��ijkl=�ijkl−�0
ijkl,

shown in Fig. 6�b� reads

��k,i�n

ijkl �q,i�n� = �3 1

�
�

q�,�n�

Qij�k�Qmn�k��klmn�q�,i�n��g0k+q�,i�n+i�n�
g0k+q+q�,i�n+i�n+i�n�

�A6�

where we used already that the bosonic momenta, q and q�,
are small compared to the fermionic momentum k. Applying
the algebraic identity AB=− A−B

A−1−B−1 to the product of fermi-
onic Green’s functions, the expression for the vertex correc-
tion can be rewritten as

��k,i�n

ijkl �q,i�n� � − �
Fijkl�k + q,i�n + i�n� − Fijkl�k,i�n�

i�n − vFq
.

�A7�

Here, we introduced the auxiliary function

Fijkl�k,i�n� = − �2Qij�k�Qmn�k�

�
1

�
�

q�,�n�

�klmn�q�,i�n��g0k+q�,i�n+i�n�

�A8�

Identifying Qmn�k�=�2Emn
� �k̂� with the basis matrix defined

in Eq. �8� and using the transformations 	Eq. �9�
 this sim-
plifies to

Fijkl�k,i�n� = − 2�2Eij
� �k̂�

1

�
�

q�,�n�

g0k+q�,i�n+i�n�

� �Ekl
� �k̂�cos2 2��� �q�,i�n�

+ Ekl
��k̂�sin2 2����q�,i�n�

� , �A9�

where k̂q̂�=cos �. In the low-energy limit, this expression

reduces to Fijkl�k , i�n��Eij
� �k̂�Ekl

� �k̂� �i�n� with the self-
energy of Eq. �A5�. From Eq. �A7� thus follows the
asymptotic relation for the vertex correction

��k,i�n

ijkl �q,i�n� � − �Eij
� �k̂�Ekl

� �k̂�
 i�n+i�n

−  i�n

i�n − vFq
.

�A10�

This relation can be identified as an asymptotic Ward
identity36 deriving from fermion number conservation. The
interaction vertex �0

ijkl in Eq. �A1� locally couples the fer-
mion density �k+q

† �k to the projection of the shear field onto
the fermionic quadrupolar momentum tensor, i.e.,
Eij

� �k̂��ij�q , i�n�. 	Note that Qij�k���2Eij
� �k̂�.
 This projec-

tion is thus a field conjugate to the density fluctuations. In
other words, the projection of the vertex �0

ijklEij
� �k̂�Ekl

� �k̂� is
just a local density-density interaction and obeys the corre-
sponding Ward identity, from which follows Eq. �A10� in the
low-energy limit.36

3. Interaction corrections to the quadrupolar polarization

We now consider the modification to the bosonic propa-
gator � in fourth order in the fermion-boson interaction �
due to the diagrams �b� and �c� in Fig. 3. In particular, we
would like to check the stability of the dynamical part of �
and its associated dynamical exponents. The strong longitu-
dinal z�=3 fluctuation are responsible for the anomalous fer-
mionic self-energy 	Eq. �A5�
 of non-Fermi-liquid form. This
self-energy correction might feed back into the quadrupolar
polarization of the electrons modifying the dynamics of the
perpendicular mode. So we focus in the following on the
corrections to the perpendicular dynamics and show that its
dynamical exponent z�=2 is in fact robust against this feed-
back effect.

First, consider the contribution of diagram �b� to the per-
pendicular mode,

����
�b� �q,i�n� =

4i��2

�vFq�2�
0

−�n

d�	 �i� + i�n� −  �i��
 .

�A11�

Using the expression �A5� for the self-energy, at criticality,
r=0, this reduces to
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����
�b� �q,i�n� = −

24

5

�4�

vF�0
�0

1/3 ��n�5/3

�vFq�2 . �A12�

The resulting dynamics seems to dominate over the
lowest-order result for ��� given in Eq. �16�. Taking into
account only diagram �b�, one might naively expect a new
dynamical exponent for the perpendicular mode given by
z�=12 /5�2.

However, it turns out that the leading contribution of dia-
gram �b� given in Eq. �A12� is exactly compensated by the
diagram �c� that includes the vertex correction,

��ijkl
�c� �q,i�n� = −

�

�
�
k,�n

��k,i�n

ijmn �q,i�n�

�Qmn�k�Qkl�k�g0k+q,i�n+i�n
g0k,i�n

.

�A13�

The cancellation of the leading contributions of diagrams �b�
and �c� becomes apparent and is easily verified upon using
the asymptotic identity for the vertex correction 	Eq. �A10�
.

A similar cancellation of singular self-energy and vertex
correction in the electron polarization due to the particle
number conservation was discussed before in the context of
the electron-gauge-field problem.35 In particular, note that a
Eliashberg type of theory would disregard the diagram �c� in
Fig. 3 containing the vertex correction and would errone-
ously conclude that the longitudinal z�=3 mode couples
back and modifies the dynamics of the perpendicular mode
from z�=2 to z�=12 /5.

APPENDIX B: ANGULAR AVERAGES OVER THE
SHEAR-MODE PROPAGATOR

For the computations of the perturbative corrections in
Sec. III A the following angular averages are needed:

� dq̂

2�
�q,i�n

�� =
1

2
��� �q,i�n

+ ���q,i�n
����, �B1a�

� dq̂

2�
�q,i�n

�� �q,i�n

�� =
1

8
��� �q,i�n

− ���q,i�n
�2������� + �������

+
1

8
��� �q,i�n

2 + ���q,i�n

2

+ 6�� �q,i�n
���q,i�n

�������. �B1b�

APPENDIX C: RENORMALIZATION GROUP
AT FINITE TEMPERATURE

In this section, we extend the RG treatment of the effec-
tive model 	Eq. �18�
 to finite temperatures in order to treat
the quantum-to-classical crossover. Following Ref. 5, we ap-
ply standard crossover theory40 to express the free energy as
a line integral along an RG trajectory,

F = �
0

�

d�e−�d+z�� �
����,�

f�	T�e��,r�e��,���e��
 , �C1�

where d=2. We follow the considerations in and leave the
exponent z unspecified in order to demonstrate the equiva-
lence of different implementations of the RG procedure. The
running temperature, T�b�, control parameter, r�b�, and dy-
namical parameters, ���b� are defined below. The integration
kernels are given by

f� = �
�

��

1

2
� d2q

�2��2

1

�
�
�n

log	���
−1 �q,i�n�
 , �C2�

where the identification �=̂� and �=̂� for the index � ap-
plies and the susceptibilities are defined in Eqs. �21� and
�22�. The momentum integral and the sum over bosonic Mat-
subara frequencies is understood to be regularized with some
UV cutoff �. Replacing the Matsubara sum with an integral
by analytic continuation and employing a hard cutoff regu-
larization, the function f� becomes

f� = �
�

��

K2

2
�

0

�

dqqP�
−�z

�z d�

2�
coth� �

2T
�

�Im log	���
−1 �q,� + i0�
 �C3�

with K2=1 / �2�� and a principal-value integral over frequen-
cies �. Note that we choose to take the frequency cutoff to
be �z. It is convenient to separate the functions f� into non-
universal and universal parts,

f��T,r,��� = f0,��r,��� + f�,��T,r,��� . �C4�

The nonuniversal parts, f0,�, are given by

f0��r,��� = f��0,0,��� + f�
�0,1,0��0,0,���r , �C5�

f0��r,��� = f��0,0,��� + f�
�0,1,0��0,0,���r

+
1

2
f�

�0,2,0��0,0,���r2, �C6�

where f�
�0,n,0� is the nth derivatives with respect to the second

argument. They contribute considerably only at the initial
stage of the RG flow, i.e., for small value of � in Eq. �C1�,
and give rise only to finite shifts of the bare values of the
theory that can be absorbed by appropriate counterterms. The
universal parts of the integration kernels, f�,�, read explicitly
�for �→��

f�,��T,r,��� = −
1

32���
r2

−
�2

4�
�
��r+�2/��

�

d��coth� �
2T

� − 1� ,

�C7�
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f�,��T,r,��� =
r3�

15�2���r + �2�

−
�2

4�2�
0

�

d��coth� �
2T

� − 1�
�arctan� ���

��r + �2�� . �C8�

The first terms on the right-hand side give the T=0 contri-
bution, respectively, and the second terms yield the finite
temperature corrections. Both yield the universal critical
contribution to the free energy. Fcr. Note that upon rescaling
r→r�2, T→T�z and ��→���

z�−z, the dependence on the
cutoff � reduces to a global multiplication by �d+z with
d=2, that can be later absorbed into the trivial scale depen-
dence of the free energy. Furthermore, the � dependence of
the universal kernels reduces to

f�,��T,r,��� =
1

��
f�,�

red ���T,r� , �C9�

which simply follows after substitution �→� /�� in the in-
tegral of Eqs. �C7� and �C8�.

We distinguish between a longitudinal and transversal part
of the free energy, Fcr=��Fcr,�, with

Fcr,� = �
0

�

d�e−�d+z�� 1

���e��
f�,�

red 	���e��T�e��,r�e��
 .

�C10�

The running dynamical parameters ���b�, temperature, T�b�,
and control parameter, r�b�, entering Eq. �C10� are given by
the RG equations

���
� log b

= �z� − z���, �C11�

���
� log b

= �z� − z���, �C12�

�T

� log b
= zT , �C13�

�r

� log b
= 2r +

2

3
u �
����,�

1

��

�

�r
f�,�

red ���T,r� , �C14�

�u

� log b
= �4 − d − z�u −

3

32���
u2, �C15�

where d=2, z�=2, and z�=3. The initial conditions are
���1�=��, T�1�=T, r�1�=r, and u�1�=u. The temperature
dependence of the RG flow of the quartic coupling, u, can
be neglected in the asymptotic low-energy limit so that
Eq. �C15� coincides with Eq. �28b�.

One can convince oneself that, of course, the critical
properties of physical observables do not depend on the spe-
cific form of frequency scaling employed in the RG process,
i.e., on the value of the exponent z. In particular, note that the

combinations of scaling variables u�b� /���b� and ���b�T�b�,
are independent of z. As a consequence, the flow of the run-
ning control parameter r�b� is also independent of z as it is
only determined by these combinations. Moreover, the addi-
tional multiplicative factor 1 /���e�� in the integrand of
Eq. �C10� just cancels the dependence of the trivial scaling
dimension of the free energy on z so that Fcr is also inde-
pendent of the specific choice of z.

The correlation length is obtained from r�b� with the help
of the identification �−2=r�b� /b2 �b=��. The zero-temperature
part of the transversal integration kernel, Eq. �C7�, propor-
tional to r2 governs the T=0 flow of the control parameter.
Only this leading term was kept in Eq. �28a�. The neglected
longitudinal kernel, Eq. �C8�, gives a subleading nonanalytic
correction to �−2 on the order O�ueffr

3/2� at T=0 with the
quartic coupling ueff /��=u���� /������ at the scale b=��.
On the other hand, the correlation length at finite tempera-
tures in the regimes �II� and �III� of the phase diagram in
Fig. 2 is controlled by the extended quantum-to-classical
crossover. This crossover is associated with scales b obeying
the relation, ���b /��T�b /���1����b /��T�b /��, which
corresponds to an extended scaling range due to the presence
of different dynamical exponents, z��z�. Solving for � in
these regimes, one recovers the self-consistent Eq. �37�.

The critical thermodynamics presented in Sec. III C fol-
lows from expression �C10� for the free energy. In particular,
the critical compressibility in regimes �I� and �II�, see
Eq. �47�, derives from the T=0 part of the transversal inte-
gration kernel 	Eq. �C7�
.

Scaling variables �� and ��

The RG Eqs. �C11� and �C12� imply that either 1 /�� or
�� is irrelevant when fixing the scaling dimension of the
other dynamical parameter to zero, z=z� or z=z�, respec-
tively. Here, we would like to demonstrate that these param-
eters are in fact dangerously irrelevant. For this purpose, it is
sufficient to show37 that the critical thermodynamics is not
well-defined in the two limits, 1 /��→0 and ��→0. First,
consider the contribution to the critical free energy deriving
from the perpendicular mode. At T=0, it simplifies to

Fcr,��T=0 = −
1

32���
�

0

�

d�e−4�	r�e��
2. �C16�

From this expression follows the aforementioned critical
compressibility in Eq. �47�. As Fcr,� is proportional to the
inverse of ��, critical thermodynamics is obviously not
well-defined in the limit ��→0. Second, consider Fcr,� de-
riving from the longitudinal mode at criticality r=0. The
leading temperature dependence is given by

Fcr,��r=0,T→0 =
1

��
�

0

�

d�e−5�f�,�
red ���Te3�,0� �

1

��
���T�5/3.

�C17�

The dependence on �� and T obtains after the appropriate
substitution �→�− 1

3 log���T� in the integral and taking the
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limit of infinite cutoff, �→�, which eliminates the residual
T dependence due to the lower boundary of the integration
range. From Eq. �C17� follows the leading behavior of the
specific heat in regimes �II� and �III�, Eq. �42�. Clearly,

it follows from Eq. �C17� that thermodynamics is also
ill-defined in the limit ��→�. Taken together, this identifies
�� and 1 /�� as dangerously irrelevant variables for the
respective choices of z.
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